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Abstract
The problem of estimating the spectrum of a density matrix is considered.
Other problems, such as bipartite pure state entanglement, can be reduced
to spectrum estimation. A local operations and classical communication
(LOCC) measurement strategy is shown which is asymptotically optimal. This
means that, for a very large number of copies, it becomes unnecessary to
perform collective measurements which should be more difficult to implement
in practice.

PACS numbers: 03.65.Wj, 03.67.−a, 03.67.Mn

1. Introduction

Estimating a mixed state density matrix optimally, when one has N copies of it available, is
a difficult problem. The problem has been solved for qubits by Vidal et al (1999), Bagan
et al (2004) and Hayashi and Matsumoto (2004) and it is known that optimal collective
measurements perform strictly better than any measurement which can be implemented with
local operations and classical communication (LOCC). For mixed qudits, i.e., mixed states on
a Hilbert space of dimension d, not much work on finding optimal collective measurements
has been done. In the present work, a simpler case is studied, the estimation of the spectrum of
a qudit density matrix. This problem has already been studied from the large deviation point
of view by Keyl and Werner (2001) and for the qubit case by Bagan et al (2005).

In addition to being interesting in itself, spectrum estimation is useful because other
problems can be reduced to it.

• Estimation of bipartite pure state entanglement. This problem has been studied for d = 2
by Sancho and Huelga (2000) and Acı́n et al (2000).

• Estimation of the generalized Pauli channel. This problem has been studied by Fujiwara
and Imai (2003) and the depolarizing channel (special case of the Pauli channel) by Sasaki
et al (2002).
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In the present paper, an LOCC asymptotically optimal1 strategy will be described. The
optimality of this LOCC strategy will be established by showing that it asymptotically satisfies
the quantum Cramér-Rao bound (QCRB), stated by Helstrom (1976). The QCRB is a bound
on the mean square error of ‘reasonable’ estimators.

This paper is organized as follows. In section 2, the necessary concepts are introduced and
it is specified what is meant by optimality. In section 3, the estimation strategy is described
and the main result is stated more precisely (equation (4)). In section 4, the conditional mean
square error matrix (MSE) is calculated; this is needed for the next two sections. A heuristic
argument supporting the main result is given in section 5 and a proof is given in section 6
(theorem 3).

2. Preliminaries

The density matrix ρ (ρ � 0, tr ρ = 1) will be parametrized in the following way:

ρ(p) =
d−1∑
k=1

pk|k〉〈k| +

(
1 −

d−1∑
l=1

pl

)
|d〉〈d|,

where p ∈ � ⊂ R
d−1 is the parameter of interest,

� =
{

(p1, . . . , pd−1) : 0 � pk � 1,

d−1∑
k=1

pk � 1

}

is the set of possible values of the parameter and {|1〉, . . . , |d〉} is a basis of eigenvectors of ρ.
The quantum estimation problem that will be studied in this paper is that, given N copies

of a completely unknown ρ, one is only interested in estimating its eigenvalues. Some of the
needed concepts and results will be introduced next for the N = 1 case.

Let M be a measurement with outcomes in a finite set �, i.e., a collection of matrices
{Mξ : ξ ∈ �} satisfying Mξ � 0 and

∑
ξ∈� Mξ = 11, and let p̂ = (p̂1, . . . , p̂d−1) be an

estimator of p, i.e., a map from � to �. The performance of such a measurement–estimator
pair will be quantified by the MSE

MSE(p̂, p,M)kl = E[(p̂k − pk)(p̂l − pl)] =
∑
ξ∈�

tr[ρ(p)Mξ ](p̂ξk − pk)(p̂ξl − pl),

where Ef means expectation of f .
The QCRB states that any unbiased2 measurement–estimator pair (p̂,M) of p satisfies

MSE(p̂, p,M) � H(p)−1,

where H is the quantum Fisher information (QFI) (see for example Helstrom (1976) or Holevo
(1982)). The QFI can be defined as the matrix with elements

H(p)kl = Re tr[ρ(p)λk(p)λl(p)],

1 That is, it performs asymptotically as well as any other measurement strategy.
2 Unbiased means that

Ep̂k =
∑
ξ∈�

tr[ρ(p)Mξ ]p̂ξk = pk.
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where {λ1(p), . . . , λd−1(p)} are the symmetric logarithmic derivatives (SLD). The SLD are
defined as self-adjoint solutions to the equation

∂kρ(p) = ρ(p)λk(p) + λk(p)ρ(p)

2
, (1)

where ∂k means partial derivative with respect to pk .
The SLD for the model studied in this paper are easy to calculate, indeed, writing (1) on

the basis of eigenvectors we get

〈i|[|k〉〈k| − |d〉〈d|]|j 〉 = pi + pj

2
〈i|λk(p)|j 〉,

or

λk(p) = |k〉〈k|
pk

− |d〉〈d|
pd

.

From the SLD one can then calculate the QFI to get

H(p)kl = δkl

pk

+
1

pd

, k, l ∈ {1, . . . , d − 1},

where pd = 1 − ∑d−1
l=1 pl ; the inverse of H is

H(p)−1
kl = pkδkl − pkpl, k, l ∈ {1, . . . , d − 1}. (2)

When one has N copies of ρ, i.e., the model is of the form ρ(p)⊗N , the QCRB becomes

MSE(p̂, p,M)(N) � H(p)−1

N
,

and this bound is valid for any measurement M (i.e. LOCC or not), as long as the measurement–
estimator pair (p̂,M) is unbiased.

The class of unbiased estimators, however, is too restrictive since in most practical
situations one deals with biased ones. Gill and Levit (1995) used a multivariate extension of
an inequality due to van Trees (1968) to prove a more general bound. From their result and
an inequality due to Braunstein and Caves (1994), it can be shown that, under some regularity

conditions, if
√

N(p̂ − p)
D→ Z(p) then

Var Z(p) � H(p)−1, (3)

where ‘
D→’ means convergence in distribution. This means that the variance of the limiting

distribution of any regular estimator satisfies the QCRB.

3. Estimation strategy

Suppose now that one knows the basis of eigenvectors, and let us consider the measurement
with elements Mk = |k〉〈k|. For this measurement, the probability of outcome k is

tr[ρ(p)Mk] = pk.

Now suppose that this measurement is performed on N copies of ρ; let Nk be the number of
times that outcome k was observed. Then {N1, . . . , Nd−1} have a multinomial distribution,
i.e.,

Pr(N1 = n1, . . . , Nd−1 = nd−1) = N !∏d
k=1 nk!

d∏
k=1

p
nk

k ,
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where nd = N − ∑d−1
k=1 nk . The estimator

p̂k = Nk

N

is unbiased and a simple calculation shows that its MSE equals the inverse of the QFI divided
by N, which means that it saturates the QCRB and therefore it is optimal.

This would be the whole story, except for the fact that we have assumed that the eigenbasis
of ρ is known. If the eigenbasis is not known, one can try to use a two-step adaptive strategy
such as the one considered by Gill and Massar (2000). The idea is to make an initial rough
estimate of ρ on an asymptotically vanishing fraction of the copies, e.g., Nµ with 0 < µ < 1.
Let σ be that initial estimate of ρ and |ψk〉 be its (not necessarily unique) eigenbasis. On
the rest of the copies (N − Nµ) of ρ, the measurement with elements Mk = |ψk〉〈ψk| is
performed.

In the rest of this paper, it will be shown that this method is asymptotically optimal, i.e.,
it asymptotically achieves the QCRB:

lim
N→∞

N MSE(p̂, p,M)(N) = H(p)−1, (4)

provided µ is chosen strictly larger than 1/2.

4. The MSE in the adaptive scheme

Let Ni = Nµ and Nf = N−Nµ be the sample sizes for the first and second stages respectively.
In the second stage, the probability of outcome k, given the initial estimate σ , is

qk = tr Mkρ(p) = 〈ψk|ρ(p)|ψk〉.

These probabilities are also a random variable.
Next the MSE of the second stage (i.e. assuming fixed q’s) will be calculated. A condition

for obtaining (4) will be derived from it.
Just as before, let Nk be the number of times that outcome k is observed and let us estimate

pk as

p̂k = Nk

Nf

.

The expectation of this estimator conditioned on σ is

E[p̂k|σ ] = qk,

so that in general it is a biased estimator. A simple calculation shows that the MSE conditioned
on the first rough estimate of ρ is

E[(p̂k − pk)(p̂l − pl)|σ ] = qkδkl − qkql

Nf

+ (pk − qk)(pl − ql). (5)

The second term is the square of the bias; the MSE itself is

MSE(p̂, p,M)(N) = E[E[(p̂k − pk)(p̂l − pl)|σ ]].
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Comparing (2) and (5) and using the fact that N/Nf → 1 as N → ∞, it is easy to see
that in order to get (4) it is sufficient that

lim
N→∞

E[N(qk − pk)(ql − pl)] = 0. (6)

Indeed, if this is true, then it also holds that E[qk] → pk and E[qkql] → pkpl .

5. Heuristic argument

Suppose for simplicity that all eigenvalues of ρ are different; then one expects that after the
first estimate, the eigenbasis of ρ and the eigenbasis of σ are related by a unitary matrix which
is very close to the identity, i.e.,

|ψk〉 = U |k〉,
with

U = exp


i

d2−1∑
α=1

ηαTα


 = eiη·T ,

where {T1, . . . , Td2−1} is a basis of su(d) satisfying tr TαTβ = δαβ, η ∈ R
d2−1 and ‖η‖ is small.

One can then expand U in Taylor series about η = 0,

U = 11 + iη · T − 1
2 (η · T )2 + o(‖η‖2).

For any decent initial estimation strategy, η is expected to go to 0 as N → ∞ at a rate of
N

−1/2
i = N−µ/2.

The expression for qk is

qk =
∑

l

pl|〈l|U |k〉|2,

and

|〈l|U |k〉|2 = δkl + 〈l|η · T |k〉〈k|η · T |l〉 − δkl〈k|(η · T )2|k〉 + o(‖η‖2);
therefore

qk − pk = 〈k|(η · T )ρ(η · T )|k〉 − pk〈k|(η · T )2|k〉 + o(‖η‖2).

From the previous expression and the fact that η goes to zero at the rate N−µ/2, one can expect
that

E(qk − pk)
2 = c

N2µ
+ o(N−2µ),

where c is a constant possibly depending on p. From the previous equation it follows that

lim
n→∞ NE(qk − pk)

2 = 0, (7)

if and only if µ > 1/2. Now, using (7) together with the Cauchy–Schwartz inequality

(E[N(qk − pk)(ql − pl)])
2 � E[N(qk − pk)

2]E[N(ql − pl)
2],

(6) follows. As pointed out before, the desired result (4) is a consequence of (6).
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6. Rigorous argument

6.1. Some intermediate results

If ρ = 11/d, then any basis chosen for the second stage will give (qk − pk) = 0, so in what
follows it is assumed that ρ 
= 11/d, i.e., ρ has at least two different eigenvalues.

The following intermediate result will be needed. Basically it states that if ρ and σ are
close to each other, then so will be their eigenvalues and eigenspaces.

Lemma 1. Let

ρ =
n∑

a=1

paa, σ =
d∑

k=1

sk|ψk〉〈ψk|,

where pa 
= pb for a 
= b, 2 � n � d is the number of different eigenvalues and a is
a projector onto the eigenspace corresponding to eigenvalue pa , and let da = tr a be the
degeneracy of pa; also let

� = min
a

min
b 
=a

|pa − pb| > 0.

If

dHS(ρ, σ ) =
√

tr(ρ − σ)2 � δ <
�

1 +
√

d
,

then

(i) ∀ a, k

|pa − sk|
√

〈ψk|a|ψk〉 � δ,

i.e., either pa is close to sk or |ψk〉 is almost orthogonal to the eigenspace corresponding
to pa .

(ii) ∀ a ∃ k such that |pa − sk| � δ and ∀ k ∃ a such that |pa − sk| � δ, i.e., every eigenvalue
of σ is close to an eigenvalue of ρ and vice versa. Let Ma = {k : |pa − sk| � δ} and
ma = |Ma| > 0. Note that Ma ∩ Mb = ∅ for a 
= b.

(iii) Let a 
= b; then if k ∈ Mb, then |pa − sk| � � − δ and

√
〈ψk|a|ψk〉 � δ

� − δ
,

i.e. if sk is within a distance δ of pb 
= pa , then |ψk〉 is almost orthogonal to the eigenspace
corresponding to pa .

(iv) ma = da , i.e., for δ small enough, the number of eigenvalues of σ within a distance δ from
pa is equal to the degeneracy of pa .

(v) ∀ k ∈ Ma ,

|pa − 〈ψk|ρ|ψk〉| � c(ρ)δ2,

where

c(ρ) = 4(d − 1)

�
.

The proof of this lemma is given in appendix A.



Estimating the spectrum of a density matrix with LOCC 1651

Now the way in which the first rough estimation is done will be specified. For this part,
it is convenient to represent ρ and σ in the following way:

ρ = 11

d
+ θ · T , σ = 11

d
+ θ̂ · T .

The initial measurement strategy (which will be called plain tomography) is to divide the
initial number of copies Ni into d2 − 1 groups of size N0 = Ni/(d

2 − 1), and in group
α ∈ {1, . . . , d2 − 1} perform the measurement

M
(α)
± = 11 ± Tα

2
.

The probabilities are

p
(α)
± = 1 ± θα

2
.

Let wα+ be the number of times that outcome + was obtained; it is binomially distributed
wα+ ∼ Bin(N0, (1 + θα)/2). The estimator for θα is taken to be

θ̂ α = 2
wα+

N0
− 1.

The following result holds.

Lemma 2. If µ > 1/2, then ∀ ε > 0 and ∀ h � 0

lim
N→∞

(Nh Pr[
√

N |qk − pk| � ε]) = 0. (8)

The proof of this lemma is given in appendix B.

6.2. Proof of the main result

Theorem 3. If µ > 1/2, then (4) holds.

Proof. Let X
(N)
k = √

N(qk − pk); clearly
(
X

(N)
k

)2 � N . All that needs to be proven is that

lim
N→∞

E
[
X

(N)
k X

(N)
l

] = 0.

We have that ∣∣E[
X

(N)
k X

(N)
l

]∣∣ � E
[∣∣X(N)

k X
(N)
l

∣∣] �
√

E
[(

X
(N)
k

)2]
E

[(
X

(N)
l

)2]
, (9)

where in the second inequality the Cauchy–Schwartz inequality has been used. Now choose
any ε > 0,

E
[(

X
(N)
k

)2] =
∑
x�0

x Pr
[(

X
(N)
k

)2 = x
]

=
∑

0�x<ε2

x Pr
[(

X
(N)
k

)2 = x
]

+
∑
x>ε2

x Pr
[(

X
(N)
k

)2 = x
]

� ε2 Pr
[(

X
(N)
k

)2
< ε2

]
+ N Pr

[(
X

(N)
k

)2 � ε2
]

� ε2 + N Pr
[∣∣X(N)

k

∣∣ � ε
]
.
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Now using (8) one gets that ∀ ε > 0

lim
N→∞

E
[(

X
(N)
k

)2] � ε2,

which implies that it must be zero; this fact and (9) imply (6) and therefore the desired
result (4). �

We have proven something about the limit of the MSE, but (3) is a bound to the variance
of the limiting distribution. However, since the limit of the MSE cannot be smaller than the
variance of the limiting distribution (which in this case can easily be proven to be Gaussian),
it follows that our estimator achieves the bound (3).

7. Estimation of bipartite pure state entanglement

A bipartite entangled pure state |ψAB〉 ∈HA ⊗HB can be written as (Schmidt’s decomposition)

|ψAB〉 =
d∑

k=1

√
pk|k〉 ⊗ |ek〉,

where {|k〉} and {|ek〉} are orthonormal bases of HA and HB which are both of dimension d.
The entanglement of |ψAB〉 can be calculated as the entropy of one of the reduced states

E(|ψAB〉) = −tr(ρA log2 ρA) = −
d∑

k=1

pk log2 pk,

where ρA = trB |ψAB〉〈ψAB |, i.e., entanglement is a function of the eigenvalues of the reduced
density matrix. This means that entanglement can be estimated by performing measurements
on ρA only, in order to estimate its spectrum. The question is whether this procedure is optimal.
A quick calculation of the QFI for the parameters pk in the model given by |ψAB〉 shows that
indeed the entanglement of |ψAB〉 can be optimally estimated by estimating the spectrum of
ρA using the procedure described above in this paper.

The same result3 was obtained by Acı́n et al (2000) for d = 2 using other tools.

8. Conclusions

The estimation of the spectrum of a finite-dimensional density matrix has been analysed. The
following LOCC procedure has been studied.

(i) Perform the so-called plain tomography on Nµ copies, where µ > 1/2 and N is the total
number of copies. From this, one gets an initial estimate of the whole density matrix,
denoted by σ . Let |ψ1〉, . . . , |ψd〉 be a set of eigenvectors of σ .

(ii) Perform the measurement with elements Mk = |ψk〉〈ψk| on the remaining N −Nµ copies
and estimate pk as the number of times the outcome k was obtained divided by N.

It has been shown that the above procedure performs asymptotically as well as any
measurement (including collective ones). This means that in the asymptotic regime there
is no need to perform the more complicated collective measurements for the estimation of the
spectrum of a density matrix (or pure bipartite entanglement).

3 That entanglement can be optimally estimated by estimating the spectrum of the reduced density matrix.
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Appendix A. Proof of lemma 1

(i) The square of the distance between ρ and σ can be written as

dHS(ρ, σ )2 =
d∑

k=1

n∑
a=1

〈ψk|(ρ − σ)a|(ρ − σ)|ψk〉

=
d∑

k=1

n∑
a=1

(pa − sk)
2〈ψk|a|ψk〉 � δ2.

Since all terms are non-negative, this implies that all of them are less than or equal to δ

and this implies point (i).
(ii) For point (ii), only the first statement will be proven; the proof of the second is almost

identical. Suppose that the opposite is true, i.e., that ∃a such that ∀k|pa − sk| > δ; then

dHS(ρ, σ )2 =
d∑

k=1

n∑
b=1

(pb − sk)
2〈ψk|b|ψk〉

�
d∑

k=1

(pa − sk)
2〈ψk|a|ψk〉

> δ2 tr a � δ2,

i.e., dHS(ρ, σ ) > δ, which is a contradiction.
(iii) |pa − sk| = |(pa − pb) + (pb − sk)| � |pa − pb| − |pb − sk| � � − δ; the second

statement follows from the previous inequality and point (i).
(iv)

ma =
∑
k∈Ma

〈ψk|ψk〉 �
∑
k∈Ma

〈ψk|a|ψk〉

= tr a−
∑
k /∈Ma

〈ψk|a|ψk〉

� tr a−
∑
k /∈Ma

(
δ

� − δ

)2

� tr a − d

(
δ

� − δ

)2

,

where point (iii) has been used. Now, since da = tr a , we get

ma � da − d

(
δ

� − δ

)2

.

Since δ < �/(1 +
√

d),

d

(
δ

� − δ

)2

< 1,
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and since ma is an integer, we have that ma � da . Using the fact that
∑

a ma = ∑
a da = d,

we get that ma = da .
(v) Let a 
= b, and k ∈ Ma ,

|pa − pb|
√

〈ψk|b|ψk〉 = |(pa − sk) + (sk − pb)|
√

〈ψk|b|ψk〉
� [|pa − sk| + |sk − pb|]

√
〈ψk|b|ψk〉

� [δ
√

〈ψk|b|ψk〉 + |sk − pb|
√

〈ψk|b|ψk〉]
� [δ

√
〈ψk|b|ψk〉 + δ] � 2δ,

where points (i) and (ii) have been used. Thus, we have that

〈ψk|b|ψk〉 � 4δ2

(pa − pb)2
.

Now we turn to the quantity of interest,

|pa − 〈ψk|ρ|ψk〉| =
∣∣∣∣∣pa −

∑
b

pb〈ψk|b|ψk〉
∣∣∣∣∣

=
∣∣∣∣∣
∑

b

(pa − pb)〈ψk|b|ψk〉
∣∣∣∣∣

�
∑

b

|pa − pb|〈ψk|b|ψk〉

=
∑
b 
=a

|pa − pb|〈ψk|b|ψk〉

� 4
∑
b 
=a

1

|pa − pb|δ
2

� 4(d − 1)

�
δ2 = c(ρ)δ2.

Appendix B. Proof of lemma 2

Now we enumerate the eigenvalues of ρ from 1 to d again, with some of them possibly
equal. Points (ii) and (iv) of lemma 1 ensure that for every eigenvalue of ρ, the right
number of eigenvalues of σ will satisfy point (v). From point (v) of lemma 1, we get that
|qk − pk| � c(ρ)δ2 implies d(ρ, σ )2 � δ2; we have

Pr[|qk − pk| � c(ρ)δ2] � Pr[d(ρ, σ )2 � δ2]

= Pr


d2−1∑

α=1

(θα − θ̂ α)2 � δ2


 .

Since
d2−1∑
α=1

(θα − θ̂ α)2 � δ2

implies that for at least one α

(θα − θ̂ α)2 � δ2

d2 − 1
,
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it follows that

Pr


d2−1∑

α=1

(θα − θ̂ α)2 � δ2


 � 1 − Pr

[
∀α, (θα − θ̂ α)2 <

δ2

d2 − 1

]

= 1 −
d2−1∏
α=1

Pr

[
|θα − θ̂ α| <

δ√
d2 − 1

]

= 1 −
d2−1∏
α=1

Pr

[∣∣∣∣wα+ − 1 + θα

2
N0

∣∣∣∣ <
N0

2

δ√
d2 − 1

]

= 1 −
d2−1∏
α=1

(
1 − Pr

[∣∣∣∣wα+ − 1 + θα

2
N0

∣∣∣∣ � N0

2

δ√
d2 − 1

])

� 1 −
(

1 − 2 exp

[
− δ2

2(d2 − 1)
N0

])d2−1

.

In the last inequality, we have used a form of the Chernoff bound4. Thus, we finally have that

Pr[|qk − pk| � c(ρ)δ2] � 1 −
(

1 − 2 exp

[
− δ2

2(d2 − 1)
N0

])d2−1

.

Now let c(ρ)δ2 = εN−1/2 and substitute N0 by its value, Nµ/(d2 − 1); the result is

Pr[
√

N |qk − pk| � ε] � 1 −
(

1 − 2 exp

[
− εNµ−1/2

2c(ρ)(d2 − 1)2

])d2−1

� 2(d2 − 1) exp

[
− εNµ−1/2

2c(ρ)(d2 − 1)2

]
.

Multiplying by Nh, taking µ > 1/2 and N → ∞, we get the desired result (8).
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Bagan E, Baig M, Muñoz-Tapia R and Rodriguez A 2004 Collective versus local measurements in a qubit mixed-state
estimation Phys. Rev. A 69 010304(R) (Preprint quant-ph/0307199)
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